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Abstract — Software plays an increasingly larger role in all
aspects of NASA'’s science missions. This has been extended
to the identification, management and control of faults
which affect safety-critical functions and by default, the
overall success of the mission. Traditionally, the analysis of
Jault identification, management and control are hardware
based. Due to the increasing complexity of system, there
has been a corresponding increase in the complexity in
Jault management software. The NASA Independent
Validation & Verification (IV&V) program is creating
processes and procedures to identify and incorporate
safety-critical ~ software  requirements  along  with
corresponding sofiware faults so that potential hazards may
be mitigated.

This Specific to Generic ... A Case for Reuse paper
describes the phases of a dependability and safety study
which identifies a new process to create a foundation for
reusable assets. These assets support the identification and
management of specific software faults and, their
transformation from specific to generic software faults. This
approach also has applications to other systems outside of
the NASA environment.

This paper addresses how a mission specific dependability
and safety case is being ftransformed to a generic
dependability and safety case which can be reused for any
type of space mission with an emphasis on software fault
conditions.

Keywords: Reuse, Safety, Dependability, Validation,
Verification, Model, Transformation

1 Introduction

The National Aeronautics and Space Administration
(NASA) have a portfolio of major projects. These range
from highly complex and sophisticated space transportation
vehicles, to robotic probes, to earth orbiting satellites
equipped with advanced sensors. In many cases, NASA’s
projects are expected to incorporate new and sophisticated
technologies that must operate in harsh, distant
environments. These projects have also produced ground-
breaking research and advanced our understanding of the
universe. However, one common theme binds most of the
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projects - they cost more and take longer to develop than
planned [1].

Many of these systems function together as complex
software intensive, safety-critical systems of systems (SoS)
to support NASA’s research missions in science,
aeronautics, and human space flight exploration [2]. A SoS
consists of multiple components and subsystems. A SoS
development project is usually accomplished over a period
of several years and most likely has rules, regulations and
standards that must be followed. In NASA’s case, it’s
imperative that all projects, including the SoS adhere to
NASA’s Office of Safety and Mission Assurance (OSMA)
policies and procedures.

The mission of NASA’s IV&V program, under the auspices
of the OSMA, is to provide the highest achievable levels of
mission and safety-critical software [9]. Safety assurance
ensures that the requirements, design, implementation,
verification and operating procedures for the identified
software minimizes or eliminates the potential for
hazardous conditions [3]. Software safety activities occur
within the context of system safety, system development,
and software development and assurance [3]. System safety
assessment 1s a disciplined, systematic approach to the
analysis of risks resulting from hazards that can affect
humans, the environment, and mission assets [4]. The
NASA IV&V Program provides assurance to our
stakeholders and customers that NASA's mission-critical
software will operate dependably and safely [2].

The IV&V program identified a need to address software-
centric safety analysis and assess the quality of software
safety engineering early in the development of a SoS to
ensure the software manages safety requirements while not
introducing system hazards. Most of the analysis is
conducted via manual inspection, source code analysis, and
more recently independent testing. The complex nature of
software intensive systems introduces the challenge of
narrowing the gap between the system requirements and
their implementation. In spite of efforts to improve the flow
of engineering information throughout the development
process, oftentimes the implemented system does not fully
match the required one, nor does it meet the user needs and



expectations [5]. This discontinuity between requirements
documentation, software, and design implementation
prevents sensible reusability, especially when the analysis is
hardware specific.

The IV&V team develops 1its own independent
understanding of each system under development which
consists of a custom System Reference Model (SRM).
These SRMs consist of a set of use cases, activity and
sequence diagrams using the Unified Modeling Language

(UML).

The basis of the modeling activity is denved from the
review of artifacts provided by the SoS developer for each
project. These artifacts include, but are not limited to,
operations concepts, requirements, specifications, code,
Failure Modes and Effects Analysis (FMEA), Fault
Management (FM) and Failure Fault Analysis (FFA).

The IV&V analyses are model-based, striving to obtain
goodness of product data in terms of three questions: What
is the system software supposed to do? What the system
sofiware is not supposed to do? What is the system
software’s expected response under adverse conditions?

During Phase I of a multi-phase dependability and safety
study, the SRM was extended to provide additional
verification and validation. Specifically, for the spacecraft
safe-hold (which is the autonomous software for managing
spacecraft hazards without ground intervention) which
establishes “safe” stable spacecraft operation, with minimal
power consumption, power-positive (sun pointing), battery
charging, and (for an earth orbiting nussion) omni-
directional (ground) communication. Ground operations can
recover from the safe event by assessing the spacecraft
failure and providing intervention to restore mission
operations [2]. Safe-hold satisfies the cardinal rules for
safety-critical software which are [6]:

e No single event or action shall be allowed to
initiate a potentially hazardous event.

e  When an unsafe condition or command 1s detected,

the system shall:
o Inhibit the potentially hazardous event
sequence.

o Initiate procedures or functions to bring
the system to a predetermined “‘safe”
state.

For the purpose of this paper, dependability and software
safety are defined as:

Dependability:

e  Dependability is the degree to which an item 1s capable
of performing its required function at any randomly
chosen time during its specified mission operating
period, disregarding scheduled maintenance outages.

Software Safety:

e  Software Safety is the aspect of software engineering
and software assurance that provide a systematic
approach to identifying, analyzing, and tracking
software mitigation and control of hazards and
hazardous functions (e.g., data and commands) to
ensure safer software operation within a system [3].

The focus of the Phase I effort was a science satellite
mission, with mature artifacts and a fairly comprehensive
list of hardware fault conditions.

This paper addresses how a mission specific dependability
and safety case is transformed to a generic dependability
and safety case which can be reused for any type of space
mission with an emphasis on software fault conditions.

The organization of the paper is as follows. Section 2
presents the process that was used for Phase I of the
dependability and safety case. Section 3 describes Phase 1T
of the dependability and safety case and transforms a SRM
model from the specific to the generic. Section 4 describes
how Section 3 can be applied to organizations both in and
outside of the space program. Section 5 concludes with a
discussion of future work. Section 6 includes the references.

2 Phase 1: Overview of Initial
Dependability & Safety Case

2.1 Model Safety-critical Behaviors

The NASA IV&V Program conducted a safety case study
for a science satellite mission. Requirements validation was
conducted on developer provided artifacts and a SRM was
developed.

In addition, FMEA and FM artifacts were reviewed for
fault conditions that would put the spacecraft in safe-hold.
It was observed that the FMEA and FM artifacts largely
focused on hardware failures. Those conditions were
compared to an IV&V program developed list of safety-
critical failure conditions which contained a combination of
hardware and software faults. Traceability was created
between system and software requirements and faults.
From this activity, gaps were documented which helped
identify missing safe-hold requirements.

Figure 1 portrays the IV&V analysis process created and
followed. Figure 2 1s a high-level depiction of the safety
case which maps high-level safety requirements and lower-
level safety requirements.
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Figure 2 - High-Level Safety Case [2]

The identified gaps indicated that both the mission
developer and the IV&V safety-critical failure conditions
were incomplete. The IV&V list was updated and discussed

with the mission developer who was very responsive to and
is acting upon the data provided. Dependability and Safety
were enhanced by the creation of a reusable template of
artifacts and processes. These items make up the safety
case to ensure that hazards are managed. Mission success
and spacecraft safety are both improved through
contingency hazard management and the resulting failure
risk reduction [2].

Throughout this phase it became clear the process identified
in Figure 1 was applicable to all of fault management and
not just sate-hold and will be incorporated into future work
addressed in Phase IL.

3 Phase II: From the Specific to the
Generic

The 1mitial models and independent list of fault conditions
were specific to a single science satellite mission. As an
exercise, the independent list of fault conditions was
compared to the fault conditions for the Mars Science
Laboratory (MSL). Early on, it became obvious that the
first mission Phase I IV&V list was only mimimally re-
usable due to its mission device-specific nature.

This is due to the fact that fault conditions for the Phase I
science mission and the IV&V developed fault conditions
list were device dependent. Although families of spacecraft
may use the same underlying architecture, the subsystem
device names are often different. It became clear that the
models and the independent list of fault conditions needed
to be based on the functionality of a subsystem at the
highest level as opposed to the functionality of the device-
specific hardware.

When comparing space missions to each other, it was
immediately obvious that all missions share many of the
same characteristics - regardless of the mission’s purpose.
All space missions have subsystems that deal with
telemetry, command and data handling, guidance
navigation and control, 1553 bus, temperatures, voltages
etc. Functionality of other missions uses pyrotechnics,
robotic rovers and unique experiments. Those subsystems
may have differing designs and device names, but the
subsystem functionality is the common thread.

Instead of focusing on the specific subsystem device with a
specific fault, the focus will be on the functionality of a
specific subsystem (Figure 3) with the fault conditions
captured at a high and generic level to more easily be
reused across other future missions. The generic behavior
faults and related hazard management can be detailed later
as the knowledge of the subsystem and its needs are
discovered. This approach creates a standardized naming
convention for dependability and safety cases across
multiple system architectures that are reused.
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Figure 3 - Focus on functionality

Using a Command and Data Handling (C&DH) example
from two distinctly different science missions, we
determined the specific device name - Single Board
Computer (SBC) from one mission and the specific device
name - Flight Computer (FC) from another mission was
actually the same device, the RAD750 computers (Figure 4)
which we refer to as the main spaceflight computers.

Mission 1 Specific Device Mission 2 Specific Device
SBC FC

\I’Lansformed V

Common Functionality
RAD 7508
Main Spaceflight Computer

Figure 4 — Identifying common functionality

The RAD750® 1s commonly used for spaceflight and its
functionality is well understood. This allows the re-use of
fault conditions from one mission to another regardless of
spacecraft family. This doesn’t preclude or eliminate the
development of, or the need for, additional fault conditions
that are unique to a specific mission.

Moving forward, the fault conditions will be divided into
three categories:

1. Cruse/orbit
2. Science Experiments
3. Surface operations (interplanetary rovers/landers)

The process in Figure 5 will be used to identify and
communicate generic fault condition candidates.
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Example

Figure 6 is an example of an activity diagram which depicts
a high-level overview of fault management for a safe-hold
event for a specific science mission. Each subsystem is
comprised of specific devices in which specific failure(s)
would result in a safe-hold event. Due to the proprietary
nature of the data, the specific device names have been
removed for the purposes of this paper.

SUBSYSTEMS - partial list

Guidance, Navigation & Control

- Star tracker pari/connector failure

- Sun sensor part/connector failure

- Inertial reference unit part/connector failure

- Temperaiure & analog part/connector failure - Magnetometer part/connector failure

- Payload a GPS part/connector failure - Reaction wheel part/connector failure

- Glohal positioning system part/connector failure

Command & Data Handling

- Power supply pari/connector failure
- RAD 750 particonnector failure

- Bulk memory part/connector failure

Safety Mech. & Anitude Control

- Propulsion I/F part/connector failure

- Solar array & high gain antenna I/F part/
connector failure

- Atfitude sensors and actuators F part/
connector failure

[Elecuical Power Systems

- Power monitor & conirol part/connector failure
- Battery part/connector failure

- Survival heater part/connector failure

- Subsystem I/F part/connector failure

- Instrument UF part/connector failure
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Figure 6 - Mission specific activity diagram for safe-hold
fault management [2]

Figure 7 transforms Figure 6 into a generic model of fault
management that can be applied to any space mission.
Device names were replaced with the functionality of each
subsystem which also account for software as well as
hardware issues. The activities were modified to include
faults of any kind, and are generic enough to be applied to

and modified by any mission developer.

SUBSYSTEMS - Capability/functionality issues - partial list

Cormmand & Daia Handling

- Main spaceflight computer HW/SW issue

- Temperature & analog HW/SW issue

- Payload & GPS Subsystem /F HW/SW issue
- 1553 I/F HW/SW issue

- Serial bus UF HW/SW issue

Electrical Power

- Power monitoring & control HW/SW issue
- Battery HW/SW issue

- Burvival heater HW/SW issue

- Subsystem 1 I/F part/connecior failure

- Subsystem N I/F pari/connector failure

- Instrument/expeniment VF HW/SW issue
- 1553 IIF HW/SW issue

- Proputsion I/F HW/ISW issue
- Serial bus UF HW/SW issue

- Solar array & antenna UF HW/SW issue

- Altitude sensors and actuators IF HWISW issue
- 1553 I/F HW/SW issue

- Serial bus U/F HW/SW issue

Subsystem N

- Functionality 1 HW/SW issue
- Functionality N HW/SW issue
Guidance. Navigation & Control

- Star fracking HW/SW issue

- Sun sensing HW/SW issue

- Inertial references HW/SW issue

- Magnetometer HW/SW issue

- Reaction wheel HW/SW issue

- Global postiioning HW/SW issue

- 1553 I/F HW/SW issue

- Serial bus UF HW/SW issue
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Figure 7 - Activity diagram for generic fault management

Once the subsystem functionality is understood, each
unique function is identified and documented. The function
1s then decomposed nto its known and potential hardware
and software faults. Using the main computer processor as
an example, potential faults include the following:

Peripheral Component Interconnect (PCI) status
register errors

Excessive accumulation of uncorrectable SDRAM
mMemory errors

Overcurrent/undercurrent
Overvoltage/undervoltage

CPU halt/hung

Etc

Some of these faults can be further decomposed into more
detailed faults. The PCI status register is used to record
status information for PCI bus related events [7] and bit 15
can be used to identify a parity error. Instead of referring to
the “SBC” or the “FC,” both of which are mission specific
devices for two different science missions, we propose a
reference to the “main spaceflight computer” along with
potential faults that the mission developer can then apply to



their specific mission. This allows the mission developer to
focus on the functionality and faults of a subsystem as
opposed to being hindered by device names.

The benefits of this concept are multi-fold:

1. A pre-defined list of fault conditions provides a
starting point for fault identification for any
mission — doesn’t recreate the wheel

2. A pre-defined list of fault conditions can be
compared to existing fault conditions to identify
gaps in both source requirements and elucidated
faults — are the bases covered?

3. A pre-defined list of fault conditions increases the
mission success and spacecraft safety probabilities
through comprehensive contingency hazard
management — 1s the list a superset of conditions?
Is the hazard management adequate?

4 Applying Phase II to Your Project

Modifying Figure 5, your organization can apply similar
fault management techniques even 1if your projects do not
have the SoS complexity (Figure 8).
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Figure 8 - Applying Phase II to your project

Replace the space mission examples with your system
information. Decompose the system into subsystems
(Figure 3) with a focus on subsystem functionality. Instead
of reviewing device functionality, replace that with your
own projects, programs or applications. When you identify
common functionality, add your lessons learned from
previous projects. These products are specific to your
business and establish a reusable baseline of artifacts for
use on multiple projects, where they become a library of
analysis models.

Don’t think spaceflight — think your business (Figure 9):
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Figure 9 - Thinking about the same thing in a different way

This will allow your organization to efficiently identify
fault conditions which accelerates your system and software
development. This IV&V process approach ensures
software and system quality. Using the IV&V three
questions ensures that you have considered the special
conditions necessary to verify that the software is properly
implemented.

5 Conclusion

In this paper we present a proactive approach to identitying
reusable fault conditions based on the functionality of a SoS
instead of identifying fault conditions based solely on
specific architecture implementation.

Phase II introduces a new way to independently vahidate
software safety requirements, via the comparison of the
FMEA, M and FFA artifacts against the IV&V team’s
own list of fault conditions. This helps the mission
developer ensure they have identified the correct fault
conditions and will help the IV&V program keep their
independent list current. This will also help the mission



developer identify missing requirements (shown as gaps by
IV&V, through this developer interaction process). This
will allow the IV&V program and the mission developer to
do the following:

e Build a foundation for dependability and safety
that is reusable

e Identify room for mmprovement m the V&V
program’s processes that extends to all projects

e Identify missing fault condition initiating failure
events, which result in hazards

e Identify missing safety requirements
e Contribute to the goodness of any mission

FM requirements are necessary for all NASA space
missions. All of the mission’s are a SoS comprised of a
combination of legacy systems and new development [2].
Phase 1I has started with the creation of generic fault
conditions for cruise/orbit portions of a mission.

Phase III will continue with fault conditions for
experiments and Phase IV will continue with fault
conditions for surface operations for planetary robotic
missions.

Using the concepts provided in this paper, any organization
can generalize for reuse their projects hazard controls using
the process identified in Figure 3.

A future goal of this study 1s to build not only generic fault
management monitors and controls by technology type, but
to also provide automated models with technology to test,
using Application Program Interfaces (APIs). This enables
automation of the design and implementation validation and
verification process. These modifications to manual
analysis contribute to dependability, safety, availability,
reliability performance, maintainability and security. It
accelerates the attainment of these goals and other safety
objectives. Accomplishing the approach outlined in this
paper contributes to the reusability of software in general,
as well as the IV&V processes used to ensure mission
success.
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